Search results

Search for "surface ripples" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders

  • Sebastian Lifka,
  • Kristóf Harsányi,
  • Erich Baumgartner,
  • Lukas Pichler,
  • Dariya Baiko,
  • Karsten Wasmuth,
  • Johannes Heitz,
  • Marco Meyer,
  • Anna-Christin Joel,
  • Jörn Bonse and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2022, 13, 1268–1283, doi:10.3762/bjnano.13.105

Graphical Abstract
  • kind of mesh on the surface ripples, as can be seen in Figure 6. Thus, not all fibers will orient perpendicular to the surface ripples. During electrospinning, the first contact with the surface takes place in form of a single, thin nanofiber. Therefore, the theory presented above, where a single, thin
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2022

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • irradiation of the PDMS samples with He+ FIB results in the formation of complex surface patterns. The patterns are composed of surface depressions in the irradiated areas and surface ripples surrounding the irradiated areas. The surface depressions have concave shapes, which are characterized by maximum
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • parallel steps or ribs. The more ordered ripple formation on nanorods can be associated with the confinement of the nanorod facets in comparison with the quasi-infinite surface of the flat substrates. Keywords: cluster ion bombardment; gas cluster ion beam; surface ripples; ZnO nanorods; Introduction The
PDF
Album
Full Research Paper
Published 24 Feb 2020

Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability

  • Camilo Florian Baron,
  • Alexandros Mimidis,
  • Daniel Puerto,
  • Evangelos Skoulas,
  • Emmanuel Stratakis,
  • Javier Solis and
  • Jan Siegel

Beilstein J. Nanotechnol. 2018, 9, 2802–2812, doi:10.3762/bjnano.9.262

Graphical Abstract
  • influences the surface energy and thus the wetting behavior [5][6][7][8][9][10]. A particular kind of controllable surface modification induced by pulsed lasers was discovered in 1965 by Milton Birnbaum [11] – upon irradiation of a germanium wafer with multiple laser pulses, self-organized periodic surface
  • ripples were formed, featuring a period close to that of the laser wavelength with an orientation perpendicular to the laser polarization. This discovery opened a new field of research, and soon thereafter, similar and more complex self-organized structures were reported for many other types of materials
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2018

Nanoscale rippling on polymer surfaces induced by AFM manipulation

  • Mario D’Acunto,
  • Franco Dinelli and
  • Pasqualantonio Pingue

Beilstein J. Nanotechnol. 2015, 6, 2278–2289, doi:10.3762/bjnano.6.234

Graphical Abstract
  • et al. [43] have obtained rippled PMMA surface (periodicity ≈ 100 nm) with a high normal force (180 nN) and a single scan using different solvents, such as water or alcohol–water mixtures. Gnecco et al. [54] have shown that surface ripples on a 400 nm thick PS film diluted with toluene can be
PDF
Album
Review
Published 02 Dec 2015
Other Beilstein-Institut Open Science Activities